9,792 research outputs found

    Grille spectrometer (grille)

    Get PDF
    The Grille spectrometer was designed and flown on Spaceklab 1 by two organizations: The Office National d'Etudes et de Recherches Aerospatiales in France and the Belgian Institute for Space Aeronomy in Belgium. Its purpose is to study, on a global scale, atmospheric parameters between 15 and 150 km altitude. The investigation uses high-resolution (better than 0.1/cm) spectroscopic observations of the earth's limb in the wavelength range characteristic of the vibrational-rotational lines of the relevant atmospheric constituents. Characteristics and proposed modifications of the grille spectrometer are described. This instrument will be part of the atmospheric science research payload flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission planned for late 1990

    Imprints of a Primordial Preferred Direction on the Microwave Background

    Get PDF
    Rotational invariance is a well-established feature of low-energy physics. Violations of this symmetry must be extremely small today, but could have been larger in earlier epochs. In this paper we examine the consequences of a small breaking of rotational invariance during the inflationary era when the primordial density fluctuations were generated. Assuming that a fixed-norm vector picked out a preferred direction during the inflationary era, we explore the imprint it would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients. We suggest that it is natural to expect that the imprint on the primordial power spectrum of a preferred spatial direction is approximately scale-invariant, and examine a simple model in which this is true.Comment: 7 pages, no figures; v5: Corrections, as well as use of more standard convention, in section I

    Time dependent correlations in marine stratocumulus cloud base height records

    Full text link
    The scaling ranges of time correlations in the cloud base height records of marine boundary layer stratocumulus are studied applying the Detrended Fluctuation Analysis statistical method. We have found that time dependent variations in the evolution of the α\alpha exponent reflect the diurnal dynamics of cloud base height fluctuations in the marine boundary layer. In general, a more stable structure of the boundary layer corresponds to a lower value of the α\alpha - indicator, i.e. larger anti-persistence, thus a set of fluctuations tending to induce a greater stability of the stratocumulus. In contrast, during periods of higher instability in the marine boundary, less anti-persistent (more persistent like) behavior of the system drags it out of equilibrium, corresponding to larger α\alpha values. From an analysis of the frequency spectrum, the stratocumulus base height evolution is found to be a non-stationary process with stationary increments. The occurrence of these statistics in cloud base height fluctuations suggests the usefulness of similar studies for the radiation transfer dynamics modeling.Comment: 12 pages, 6 figures; to appear in Int. J. Mod. Phys. C, Vol. 13, No. 2 (2002

    An Evaluation of Size-Resolved Cloud Microphysics Scheme Numerics for Use with Radar Observations. Part I: Collision-Coalescence

    Get PDF
    This study evaluates some available schemes designed to solve the stochastic collection equation (SCE) for collision-coalescence of hydrometeors using a size-resolved (bin) microphysics approach, and documents their numerical properties within the framework of a box model. Comparing three widely used SCE schemes, we find that all converge to almost identical solutions at sufficiently fine mass grids. However, one scheme converges far slower than the other two and shows pronounced numerical diffusion at the large-drop tail of the size distribution. One of the remaining two schemes is recommended on the basis that it is well-converged on a relatively coarse mass grid, stable for large time steps, strictly mass-conservative, and computationally efficient. To examine the effects of SCE scheme choice on simulating clouds and precipitation, two of the three schemes are compared in large-eddy simulations of a drizzling stratocumulus field. A forward simulator that produces Doppler spectra from the large-eddy simulation results is used to compare the model output directly with radar observations. The scheme with pronounced numerical diffusion predicts excessively large mean Doppler velocities and overly broad and negatively skewed spectra compared with observations, consistent with numerical diffusion demonstrated in the box model. Statistics obtained using the recommended scheme are closer to observations, but notable differences remain, indicating that factors other than SCE scheme accuracy are limiting simulation fidelity

    Disputing Together: Conflict Resolution and the Search for Community

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Medical Malpractice: A Time for More Talk and Less Rhetoric

    Get PDF
    corecore